MATHEMATICS

All the Buzz for Bees

Recommended materials:

game pieces, plastic cups, dice/die, dry erase board with marker (optional)

Description:

This lesson helps learners understand how genes and environment affect animal behavior of the almighty yet vanishing honeybee.

Tips:

Materials don't necessarily have to be purchased new for this activity. Household or classroom items that you already have can be used (i.e. math manipulatives for the game pieces or substitute the dry erase board with pen and paper).

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

Conditionals with Cards

Required materials:

paper, markers, glue

Hour of Code Description:

We don’t always know ahead of time what things will be like when we run our computer programs. Different users have different needs, and sometimes you will want to do something based off of one user’s need that you don’t want to do with someone else. That is where conditionals come in. This lesson demonstrates how conditionals can be used to tailor a program to specific information.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Paper Airplanes: Real-Life Algorithms

ESTIMATED COST:

$0.08

PER STUDENT

Photo cred: ScienceBuddies.org

Photo cred: ScienceBuddies.org

Required materials:

paper, scissors, glue

Code.org Description:

This lesson calls out ways we use algorithms in our daily lives, specifically making paper airplanes. This lesson also focuses on the bigger picture of computer science and how algorithms play an essential part.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Graph Paper Programming

ESTIMATED COST:

$0.08

PER STUDENT

Photo cred: ScienceBuddies.org

Photo cred: ScienceBuddies.org

Required materials:

paper, markers, glue

Code.org Description:

This lesson calls out ways we use algorithms in our daily lives, specifically making paper airplanes. This lesson also focuses on the bigger picture of computer science and how algorithms play an essential part.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Pixel Perfect Low-tech Comp Sci

Required materials:

markers and graph paper (or index cards and a ruler)

Description:

This low-tech offline lesson plan covers the basics of computer graphics. After learning about how graphics work, students will create their own Color by Pixel programs.

Tips:

If graph paper is difficult to find, create the grids on index cards with a ruler. For a high-tech extension of this lesson, click here.

NGSS alignment:

2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

BubbleSci

Recommended materials:

different types of soap (dish soap, hand soap, bubble bath, etc.), glycerin or corn syrup, items to make bubble wands (pipe cleaners, straws, etc.), measuring tools (cups, spoons, droppers, etc.), stopwatch (or smartphone app), distilled water, containers like cups or empty bubble solution bottles for students to test and keep their solutions.

Description:

Blowing bubbles may seem like a simple or childish pastime. However, blowing a bubble is packed with STEM concepts from physics to geometry to art (with that STEM becomes STEAM!). The lessons provided above allow teachers to take this activity in many directions to suit their instructional needs. For an engineering route, set up design challenges for the bubble wand and the solution. For a math route, study shapes, ratios or volume calculations. For a physics or chemistry route, experiment with air speed, solutions, surface tension and more.

Tips:

If glycerin is difficult to find, corn syrup can be used instead.  Also, your local dollar store may carry small bubble containers with wands as party or wedding favors, which make great containers to store students' final solutions.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

Parts Per Million Activity

Required materials:

eyedropper, water, graduated cylinder (10 mL graduations), clear plastic cups, markers, food coloring

Description:

“Parts per million” is a scientific unit of measurement that counts the number of units of one substance per one million units of another. But because it’s hard to conceptualize really large numbers, it can be difficult to wrap our brains around what “one part per million” really means. Kim Preshoff (with help from 100+ animators from the TED-Ed Community) shares nine helpful ways to visualize it. Take this concept further with your choice (or both!) of the two lessons above.

Tips:

The Rutgers Engineering Planet lesson plan calls for masking tape, but the cup itself can be labeled with a permanent marker. For the Country Club Ichthycide Lab, egg platters can substitute the Chemplates. The more affordable option is to use cups, so it is up to the teacher's discretion whether to use cups or the platters/Chemplates. Also, the eyedropper can be substituted by an empty food coloring bottle.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

2 Lessons, 1 Tiny Concept: Intro to Nano

ESTIMATED COST PER STUDENT: 

Lesson 1 = $0.10

Lesson 2 = $0.04

Photo cred: TED-Ed

Photo cred: TED-Ed

Required materials:

Lesson 1: scissors, pencil, crayon, eraser, pencil sharpener, index card, chalk, calculator, a doorknob (within classroom), roll of tape

Lesson 2: clear cups, antacid tablets, water

Description:

Lesson 1 focuses on how to measure at the nano scale and provides students with an understanding of how small a nanometer really is. Students learn about electron microscopes, participate in hands-on activities to measure common classroom objects in the metric scale, and then convert the result to nanometers.

Lesson 2 focuses on how materials behave differently as their surface area increases. Students will learn about nanotechnology and how engineers can harness the differences in how materials behave when small to solutions for challenges in many industries. 

Tips:

Many craft, household or classroom items that you already have will work for this activity and can be reused multiple times. One class can use one of each item if students can exchange or trade them between groups as they work through their data collection from measuring the length (or diameter for the tape).

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information