6th grade

Conditionals with Cards

Required materials:

paper, markers, glue

Hour of Code Description:

We don’t always know ahead of time what things will be like when we run our computer programs. Different users have different needs, and sometimes you will want to do something based off of one user’s need that you don’t want to do with someone else. That is where conditionals come in. This lesson demonstrates how conditionals can be used to tailor a program to specific information.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Paper Airplanes: Real-Life Algorithms

ESTIMATED COST:

$0.08

PER STUDENT

 Photo cred: ScienceBuddies.org

Photo cred: ScienceBuddies.org

Required materials:

paper, scissors, glue

Code.org Description:

This lesson calls out ways we use algorithms in our daily lives, specifically making paper airplanes. This lesson also focuses on the bigger picture of computer science and how algorithms play an essential part.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Graph Paper Programming

ESTIMATED COST:

$0.08

PER STUDENT

 Photo cred: ScienceBuddies.org

Photo cred: ScienceBuddies.org

Required materials:

paper, markers, glue

Code.org Description:

This lesson calls out ways we use algorithms in our daily lives, specifically making paper airplanes. This lesson also focuses on the bigger picture of computer science and how algorithms play an essential part.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Leaf Chromatography

Required materials:

several leaves from different trees, small glass containers, rubbing alcohol, paper coffee filters, shallow aluminum pan, hot tap water, aluminum foil, scissors, tape, marker, sticky notes, plastic spoons

TED-Ed Description:

It's true that the cooler weather is a good indication that the seasons are changing, but there's no sign like the color of the leaves. In this lesson, you'll learn why leaves change color in the fall, and you'll learn how to do paper chromatography to separate the pigments found in a leaf.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 3. Planning and carrying out investigations 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

Muscle Models

ESTIMATED COST:

$0.07

PER STUDENT

 Photo cred: Krieger Science

Photo cred: Krieger Science

Required materials:

rubber bands, craft sticks, straws, metal brads, ruler, metal paper clip

Description:

Humans have 600+ muscles but only a set number of muscle fiber at birth. These fibers can increase in strength and size with exercise. In these lessons, students can learn the cellular mechanisms that lead to muscle growth as well as create and test models of muscle fiberss. 

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

Electrifying STEM: Circuits and Batteries

Required materials:

"switches," wire strippers, insulated wire, flashlight, lightbulbs, batteries, electrical tape

Description:

TED-Ed calls batteries a "triumph of science." They allow electronics to operate "without anchoring us to an infernal tangle of power cables." The activities above take learners from simple circuits to an electrifying design challenge.

Tips:

Scissors may be used instead of wire strippers, but may take extra practice to strip the wire. Select a flashlight that can be easily disassembled so that the lightbulb can be removed. Also, replacing flashlights with lightbulbs may be more cost effective.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

Keep Calm and Just Breathe

Required materials:

plastic soft drink bottle, straw, rubber band, scissors, balloons, clay

Description:

Breathing ensures oxygen is transported to cells so they can function while removing carbon dioxide, a byproduct of this process. This lesson involves constructing a model lung to show how the complex process of breathing keeps us all alive.

Tips:

Materials don't necessarily have to be purchased new for this activity. Household or classroom items that you already have can be used and reused for this activity, saving you even more money!

NGSS alignment:

2. Developing and using models 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

Study Extreme Weather with a Dollar Store Barometer

ESTIMATED COST:

$0.07

PER STUDENT

 Photo cred: Easy Science For Kids

Photo cred: Easy Science For Kids

Required materials:

jar or can, large balloon, rubber band, scissors, tape, stirring stick or straw, index card

Description:

A barometer is an instrument that measures air pressure, allowing weather forecasters and scientists to better predict extreme weather events. Actually, you don’t need to be a professional weather reporter to understand weather patterns.  This easy to assemble barometer made from dollar store items can help!

Tips:

Craft, household or classroom items that you already have will work for this activity and can possibly be reused. 

NGSS alignment:

2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

STEM in the Sun Lesson: Here Comes the Sun

ESTIMATED COST:

$0.15

PER STUDENT

 Photo cred: TED-Ed

Photo cred: TED-Ed

Required materials:

used or new basic calculator, eyeglass repair kit or mini screwdriver, scotch tape

Description:

The Here Comes the Sun activity explores the concept of how solar energy is gathered by solar panels and adapted to provide power to a variety of machines, from calculators to spacecraft. Students disassemble a solar powered calculator to explore the component parts and work in teams to suggest design enhancements to the calculator to improve performance.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

Pixel Perfect Low-tech Comp Sci

Required materials:

markers and graph paper (or index cards and a ruler)

Description:

This low-tech offline lesson plan covers the basics of computer graphics. After learning about how graphics work, students will create their own Color by Pixel programs.

Tips:

If graph paper is difficult to find, create the grids on index cards with a ruler. For a high-tech extension of this lesson, click here.

NGSS alignment:

2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Low-tech Comp Sci: Robot Friends

ESTIMATED COST:

$0.04

PER STUDENT

 Photo cred: Tinkersmith

Photo cred: Tinkersmith

Required materials:

paper, markers, cups

Description:

This computer science lesson is a great low-tech introduction to coding. My Robotic Friends teaches students the connection between symbols and actions, as well as the valuable skill of debugging. Using a predefined “Robot Vocabulary,” students will figure out how to guide one another to accomplish specific tasks without discussing them first.

Tips:

The lesson plan has great adjustments for lower elementary, upper elementary and grades 7+.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Folding for Outer Space

ESTIMATED COST:

$0.16

PER STUDENT

 Photo cred: NASA

Photo cred: NASA

Recommended materials:

aluminum foil, tape, small cardboard boxes

Description:

In this lesson, participants will explore how scientists and engineers incorporate folding and unfolding into many fascinating applications and technologies like telescopes and solar panels to study our galaxy and beyond. 

Tips:

Many craft, household or classroom items that you already have will work for this activity and can possibly be reused. The recommended materials listed above have already been tested as a part of this lesson. Students should be given access to as many or as few materials as you can afford. Allow students to be creative. I've done this activity with only foil, tape and one small reused gift box! After finishing the activity, reuse the gift boxes to get the most "folds" for your money!

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating informatio

BubbleSci

Recommended materials:

different types of soap (dish soap, hand soap, bubble bath, etc.), glycerin or corn syrup, items to make bubble wands (pipe cleaners, straws, etc.), measuring tools (cups, spoons, droppers, etc.), stopwatch (or smartphone app), distilled water, containers like cups or empty bubble solution bottles for students to test and keep their solutions.

Description:

Blowing bubbles may seem like a simple or childish pastime. However, blowing a bubble is packed with STEM concepts from physics to geometry to art (with that STEM becomes STEAM!). The lessons provided above allow teachers to take this activity in many directions to suit their instructional needs. For an engineering route, set up design challenges for the bubble wand and the solution. For a math route, study shapes, ratios or volume calculations. For a physics or chemistry route, experiment with air speed, solutions, surface tension and more.

Tips:

If glycerin is difficult to find, corn syrup can be used instead.  Also, your local dollar store may carry small bubble containers with wands as party or wedding favors, which make great containers to store students' final solutions.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

2 Lessons, 1 Tiny Concept: Intro to Nano

ESTIMATED COST PER STUDENT: 

Lesson 1 = $0.10

Lesson 2 = $0.04

 Photo cred: TED-Ed

Photo cred: TED-Ed

Required materials:

Lesson 1: scissors, pencil, crayon, eraser, pencil sharpener, index card, chalk, calculator, a doorknob (within classroom), roll of tape

Lesson 2: clear cups, antacid tablets, water

Description:

Lesson 1 focuses on how to measure at the nano scale and provides students with an understanding of how small a nanometer really is. Students learn about electron microscopes, participate in hands-on activities to measure common classroom objects in the metric scale, and then convert the result to nanometers.

Lesson 2 focuses on how materials behave differently as their surface area increases. Students will learn about nanotechnology and how engineers can harness the differences in how materials behave when small to solutions for challenges in many industries. 

Tips:

Many craft, household or classroom items that you already have will work for this activity and can be reused multiple times. One class can use one of each item if students can exchange or trade them between groups as they work through their data collection from measuring the length (or diameter for the tape).

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

A SUPER Strong STEM Activity: Super Cuffs by @TechbridgeGirls

Required materials:

straws, tape, scissors, cylindrical container (like a soup can or jar), heavy items (like books)

Description:

In this activity, you will take on the role of a structural engineer. Structural engineers use shapes to add strength and stability to buildings roads, and a variety of products. Your mission is to create a powerful wrist cuff by using a repeating pattern of shapes. The cuffs have to be strong enough to support the weight of a stack of books.

Tips:

Any cylindrical object that measures larger than most wrists can be used instead of a soup can. For example, the inside of the roll of tape can be used to shape the cuffs.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 6. Constructing explanations (for science) and designing solutions (for engineering)

Functional Fashion Challenge

Required materials:

Any free CAD software i.e. Autodesk Inventor (free student version) or Morphi*

Description:

Design challenges provide opportunities to apply skills and knowledge in unique and creative ways. Designers are often asked to create or innovate products that solve complex problems, yet address aesthetic requirements to make the product as profitable as possible.  As you will discover with this challenge, designers sometimes have to embody the role of engineers and artists to ensure all solutions also are aesthetically pleasing and creative enough to serve multiple purposes.

Tips*:

No materials are needed for this project except the teacher's choice of CAD software and one compatible computer per 1-2 students. Basic craft materials can be used to prototype students' physical designs or elevate the activity by 3D printing the prototypes.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  6. Constructing explanations (for science) and designing solutions (for engineering)  8. Obtaining, evaluating, and communicating information

Sink, Float, Hover Challenge

Required materials:

small containers with lids (film canisters work best), variety of small, heavy objects (coins, washers, marbles, etc.), variety of small, lightweight objects (corks, beads, Styrofoam, etc.), rubber bands (optional to keep lid on canisters or modify distribution of mass), and large containers of water

Description:

Students will learn about density, buoyancy, and how submarines dive. Students will design and create a vessel that is able to sink, hover, and float.

Tips:

Many craft, household or classroom items that you already have will work for this activity and can possibly be reused. Items listed here have already been tested with students as a part of this lesson. Students should be given access to as many or as few materials as you can afford. This allows students to be more creative. 

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models 3. Planning and carrying out investigations  4. Analyzing and interpreting data   6. Constructing explanations (for science) and designing solutions (for engineering)  8. Obtaining, evaluating, and communicating information

Pepsi v. Coke (or Aquafina v. Dasani) Experiment

Required materials:

paper drinking cups, Pepsi and Coke (or Aquafina and Dasani)

Description:

Does gender actually affect your ability to taste? Can girls taste the difference between Pepsi and Coke better than boys? These may seem like silly questions, but they can be used to provide an introduction to designing scientific experiments. In this lesson, students will learn what experimental design is, as well as design and complete their own scientific experiment.

NGSS Alignment:

3. Planning and carrying out investigations  4. Analyzing and interpreting data  5. Using mathematics and computational thinking

On Target Challenge

Estimated cost:

$0.10

per student

 Photo cred: PBS Kids

Photo cred: PBS Kids

Required materials:

zip line (wire or fishing line), index card, marbles, masking tape, paper clips, paper cups, scissors, a Target (can be drawn on a piece of paper)

Description:

This activity turns a paper cup into something that can zip down a line and drop a marble onto a target. Just as the success of NASA's LCROSS (Lunar Crater Observation and Sensing Satellite) depends on hitting the crater exactly, success in this activity depends on being able to hit the target accurately and consistently. As students test their designs, encourage them to find ways to make it work better.

Tips:

A few of the items needed for this activity are reusable or can be replaced by classroom or household items you already have, saving you even more money!

NGSS Alignment:

2. Developing and using models  3. Planning and carrying out investigations 

Adaptive Design Challenge

Suggested materials:

craft materials, i.e. masking (or scotch tape), string, chenille stems (pipe cleaners), markers, toothpicks, fastener strip (Velcro), construction paper

Description:

According to TryEngineering.org, engineers have developed products that help those with physical challenges lead more comfortable and independent lives.  As shown in the videos below, adaptive designs not only help those in need, adaptive designs help everyone and make life better for all!

Tips:

Many craft, household or classroom items that you already have will work for this activity and can possibly be reused. Items listed here have already been tested with students as a part of this lesson. Students should be given access to as many or as few materials as you can afford. Allow students to be creative. I've done this activity with only toothpicks, markers and construction paper!

NGSS Alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  6. Constructing explanations (for science) and designing solutions (for engineering)  8. Obtaining, evaluating, and communicating information