Electrifying STEM: Circuits and Batteries

Required materials:

"switches," wire strippers, insulated wire, flashlight, lightbulbs, batteries, electrical tape

Description:

TED-Ed calls batteries a "triumph of science." They allow electronics to operate "without anchoring us to an infernal tangle of power cables." The activities above take learners from simple circuits to an electrifying design challenge.

Tips:

Scissors may be used instead of wire strippers, but may take extra practice to strip the wire. Select a flashlight that can be easily disassembled so that the lightbulb can be removed. Also, replacing flashlights with lightbulbs may be more cost effective.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

Keep Calm and Just Breathe

Required materials:

plastic soft drink bottle, straw, rubber band, scissors, balloons, clay

Description:

Breathing ensures oxygen is transported to cells so they can function while removing carbon dioxide, a byproduct of this process. This lesson involves constructing a model lung to show how the complex process of breathing keeps us all alive.

Tips:

Materials don't necessarily have to be purchased new for this activity. Household or classroom items that you already have can be used and reused for this activity, saving you even more money!

NGSS alignment:

2. Developing and using models 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

Study Extreme Weather with a Dollar Store Barometer

ESTIMATED COST:

$0.07

PER STUDENT

Photo cred: Easy Science For Kids

Photo cred: Easy Science For Kids

Required materials:

jar or can, large balloon, rubber band, scissors, tape, stirring stick or straw, index card

Description:

A barometer is an instrument that measures air pressure, allowing weather forecasters and scientists to better predict extreme weather events. Actually, you don’t need to be a professional weather reporter to understand weather patterns.  This easy to assemble barometer made from dollar store items can help!

Tips:

Craft, household or classroom items that you already have will work for this activity and can possibly be reused. 

NGSS alignment:

2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

STEM in the Sun Lesson: Here Comes the Sun

Required materials:

used or new basic calculator, eyeglass repair kit or mini screwdriver, scotch tape

Description:

The Here Comes the Sun activity explores the concept of how solar energy is gathered by solar panels and adapted to provide power to a variety of machines, from calculators to spacecraft. Students disassemble a solar powered calculator to explore the component parts and work in teams to suggest design enhancements to the calculator to improve performance.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

Pixel Perfect Low-tech Comp Sci

Required materials:

markers and graph paper (or index cards and a ruler)

Description:

This low-tech offline lesson plan covers the basics of computer graphics. After learning about how graphics work, students will create their own Color by Pixel programs.

Tips:

If graph paper is difficult to find, create the grids on index cards with a ruler. For a high-tech extension of this lesson, click here.

NGSS alignment:

2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Low-tech Comp Sci: Robot Friends

ESTIMATED COST:

$0.04

PER STUDENT

Photo cred: Tinkersmith

Photo cred: Tinkersmith

Required materials:

paper, markers, cups

Description:

This computer science lesson is a great low-tech introduction to coding. My Robotic Friends teaches students the connection between symbols and actions, as well as the valuable skill of debugging. Using a predefined “Robot Vocabulary,” students will figure out how to guide one another to accomplish specific tasks without discussing them first.

Tips:

The lesson plan has great adjustments for lower elementary, upper elementary and grades 7+.

NGSS alignment:

2. Developing and using models 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 8. Obtaining, evaluating, and communicating information

Folding for Outer Space

ESTIMATED COST:

$0.16

PER STUDENT

Photo cred: NASA

Photo cred: NASA

Recommended materials:

aluminum foil, tape, small cardboard boxes

Description:

In this lesson, participants will explore how scientists and engineers incorporate folding and unfolding into many fascinating applications and technologies like telescopes and solar panels to study our galaxy and beyond. 

Tips:

Many craft, household or classroom items that you already have will work for this activity and can possibly be reused. The recommended materials listed above have already been tested as a part of this lesson. Students should be given access to as many or as few materials as you can afford. Allow students to be creative. I've done this activity with only foil, tape and one small reused gift box! After finishing the activity, reuse the gift boxes to get the most "folds" for your money!

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating informatio

BubbleSci

Recommended materials:

different types of soap (dish soap, hand soap, bubble bath, etc.), glycerin or corn syrup, items to make bubble wands (pipe cleaners, straws, etc.), measuring tools (cups, spoons, droppers, etc.), stopwatch (or smartphone app), distilled water, containers like cups or empty bubble solution bottles for students to test and keep their solutions

OR

Skip the trip to the store! Purchase a kit at Etsy.com.

Description:

Blowing bubbles may seem like a simple or childish pastime. However, blowing a bubble is packed with STEM concepts from physics to geometry to art (with that STEM becomes STEAM!). The lessons provided above allow teachers to take this activity in many directions to suit their instructional needs. For an engineering route, set up design challenges for the bubble wand and the solution. For a math route, study shapes, ratios or volume calculations. For a physics or chemistry route, experiment with air speed, solutions, surface tension and more.

Tips:

If glycerin is difficult to find, corn syrup can be used instead.  Also, your local dollar store may carry small bubble containers with wands as party or wedding favors, which make great containers to store students' final solutions.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

Parts Per Million Activity

Required materials:

eyedropper, water, graduated cylinder (10 mL graduations), clear plastic cups, markers, food coloring

Description:

“Parts per million” is a scientific unit of measurement that counts the number of units of one substance per one million units of another. But because it’s hard to conceptualize really large numbers, it can be difficult to wrap our brains around what “one part per million” really means. Kim Preshoff (with help from 100+ animators from the TED-Ed Community) shares nine helpful ways to visualize it. Take this concept further with your choice (or both!) of the two lessons above.

Tips:

The Rutgers Engineering Planet lesson plan calls for masking tape, but the cup itself can be labeled with a permanent marker. For the Country Club Ichthycide Lab, Clear Plastic Egg Platters can substitute the Chemplates. The more affordable option is to use cups, so it is up to the teacher's discretion whether to use cups or the platters/Chemplates. Also, the eyedropper can be substituted by an empty food coloring bottle.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering) 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 8. Obtaining, evaluating, and communicating information

2 Lessons, 1 Tiny Concept: Intro to Nano

Required materials:

Lesson 1: scissors, pencil, crayon, eraser, pencil sharpener, index card, chalk, calculator, a doorknob (within classroom), roll of tape

Lesson 2: clear cups, antacid tablets, water

Description:

Lesson 1 focuses on how to measure at the nano scale and provides students with an understanding of how small a nanometer really is. Students learn about electron microscopes, participate in hands-on activities to measure common classroom objects in the metric scale, and then convert the result to nanometers.

Lesson 2 focuses on how materials behave differently as their surface area increases. Students will learn about nanotechnology and how engineers can harness the differences in how materials behave when small to solutions for challenges in many industries. 

Tips:

Many craft, household or classroom items that you already have will work for this activity and can be reused multiple times. One class can use one of each item if students can exchange or trade them between groups as they work through their data collection from measuring the length (or diameter for the tape).

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 4. Analyzing and interpreting data 5. Using mathematics and computational thinking 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information

Crash Test Piñata by @TechbridgeGirls

Required materials:

materials for the piñata (i.e. cereal box, other food packaging box, cardboard, poster board, packaging paper, etc.), tape, string, scissors, candy, rope, broomstick (or pool noodle or plastic baseball bat)

Description:

In this activity, you will design a piñata using an empty cereal box and other materials. Like a safety engineer designing a car to withstand a crash, you will use engineering skills to make a piñata that can withstand the impact of 10 hits and safely contain one cup of candy.

Tips:

Materials don't necessarily have to be purchased new for this activity. Household or classroom items that you already have can be used (i.e. cardboard boxes from recent online purchases, any empty cardboard packaging, upcycled cardstock or posterboard from previous projects, etc.). You may already have a suitable broomstick to use instead of purchasing a new one, or you can opt for a ""softer"" object to test piñatas with like a plastic bat or a pool noodle.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 6. Constructing explanations (for science) and designing solutions (for engineering)

A SUPER Strong STEM Activity: Super Cuffs by @TechbridgeGirls

Required materials:

straws, tape, scissors, cylindrical container (like a soup can or jar), heavy items (like books)

Description:

In this activity, you will take on the role of a structural engineer. Structural engineers use shapes to add strength and stability to buildings roads, and a variety of products. Your mission is to create a powerful wrist cuff by using a repeating pattern of shapes. The cuffs have to be strong enough to support the weight of a stack of books.

Tips:

Any cylindrical object that measures larger than most wrists can be used instead of a soup can. For example, the inside of the roll of tape can be used to shape the cuffs.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  3. Planning and carrying out investigations 6. Constructing explanations (for science) and designing solutions (for engineering)

Functional Fashion Challenge

Required materials:

Any free CAD software i.e. Autodesk Inventor (free student version) or Morphi*

Description:

Design challenges provide opportunities to apply skills and knowledge in unique and creative ways. Designers are often asked to create or innovate products that solve complex problems, yet address aesthetic requirements to make the product as profitable as possible.  As you will discover with this challenge, designers sometimes have to embody the role of engineers and artists to ensure all solutions also are aesthetically pleasing and creative enough to serve multiple purposes.

Tips*:

No materials are needed for this project except the teacher's choice of CAD software and one compatible computer per 1-2 students. Basic craft materials can be used to prototype students' physical designs or elevate the activity by 3D printing the prototypes.

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  6. Constructing explanations (for science) and designing solutions (for engineering)  8. Obtaining, evaluating, and communicating information

Sink, Float, Hover Challenge

Required materials:

small containers with lid (film canisters work best), variety of small, heavy objects (coins, washers, marbles, etc.), variety of small, lightweight objects (corks, beads, Styrofoam, etc.), rubber bands (optional to keep lid on canisters or modify distribution of mass), and large containers of water

Description:

Students will learn about density, buoyancy, and how submarines dive. Students will design and create a vessel that is able to sink, hover, and float.

Tips:

Many craft, household or classroom items that you already have will work for this activity and can possibly be reused. Items listed here have already been tested with students as a part of this lesson. Students should be given access to as many or as few materials as you can afford. This allows students to be more creative. 

NGSS alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models 3. Planning and carrying out investigations  4. Analyzing and interpreting data   6. Constructing explanations (for science) and designing solutions (for engineering)  8. Obtaining, evaluating, and communicating information

Pepsi v. Coke (or Aquafina v. Dasani) Experiment

Required materials:

paper drinking cups, Pepsi and Coke (or Aquafina and Dasani)

Description:

Does gender actually affect your ability to taste? Can girls taste the difference between Pepsi and Coke better than boys? These may seem like silly questions, but they can be used to provide an introduction to designing scientific experiments. In this lesson, students will learn what experimental design is, as well as design and complete their own scientific experiment.

NGSS Alignment:

3. Planning and carrying out investigations  4. Analyzing and interpreting data  5. Using mathematics and computational thinking

On Target Challenge

Required materials:

zip line (wire or fishing line), index card, marbles, masking tape, paper clips, paper cups, scissors, a Target (drawn on a piece of paper)

OR

Skip the trip to the store! Purchase a kit at Etsy.com.

Description:

This activity turns a paper cup into something that can zip down a line and drop a marble onto a target. Just as the success of NASA's LCROSS (Lunar Crater Observation and Sensing Satellite) depends on hitting the crater exactly, success in this activity depends on being able to hit the target accurately and consistently. As students test their designs, encourage them to find ways to make it work better.

Tips:

A few of the items needed for this activity are reusable or can be replaced by classroom or household items you already have, saving you even more money!

NGSS Alignment:

2. Developing and using models  3. Planning and carrying out investigations 

Adaptive Design Challenge

Suggested materials:

craft materials, i.e. masking (or scotch tape), string, chenille stems (pipe cleaners), markers, toothpicks, fastener strip (Velcro), construction paper

OR

Skip the trip to the store! Purchase a kit at Etsy.com.

Description:

According to TryEngineering.org, engineers have developed products that help those with physical challenges lead more comfortable and independent lives.  As shown in the videos below, adaptive designs not only help those in need, adaptive designs help everyone and make life better for all!

Tips:

Many craft, household or classroom items that you already have will work for this activity and can possibly be reused. Items listed here have already been tested with students as a part of this lesson. Students should be given access to as many or as few materials as you can afford. Allow students to be creative. I've done this activity with only toothpicks, markers and construction paper!

NGSS Alignment:

1. Asking questions (for science) and defining problems (for engineering)  2. Developing and using models  6. Constructing explanations (for science) and designing solutions (for engineering)  8. Obtaining, evaluating, and communicating information

The Marshmallow Challenge

Required materials:

spaghetti, string, marshmallow, masking tape, paper lunch bag (optional)

OR

Skip the trip to the store! Purchase a kit at Etsy.com.

Description:

The Marshmallow Challenge is a remarkably fun and instructive design exercise that encourages teams to experience simple but profound lessons in collaboration, innovation and creativity. The task is simple: in eighteen minutes, teams must build the tallest free-standing structure out of 20 sticks of spaghetti, one yard of tape, one yard of string and one marshmallow. The marshmallow needs to be on top. (http://marshmallowchallenge.com/)

NGSS Alignment:

1. Asking questions (for science) and defining problems (for engineering)  6. Constructing explanations (for science) and designing solutions (for engineering)

Tech in a Bag

Estimated cost:

$0.08

per student

tech in a bag.jpeg

Required materials:

household or classroom items, i.e. plastic snack bags, sticky notes, toothpaste, pair of scissors, markers, pencils, etc. within a paper lunch bag

OR

Skip the trip to the store! Purchase a kit at Etsy.com.

Description:

Many students believe that technology only refers to things powered by electricity. In this lesson, each group of students gets a “mystery bag” containing an example of technology. When students open their bags, they may be surprised to see that they contain everyday objects like sponges, slippers, or bubblegum! (eie.org)

Tips:

Nothing necessarily needs to be bought for this lesson except possibly the paper bags. Many household or classroom items that you already have will work for this activity and can be reused multiple times. Items listed here have already been tested with students as a part of this lesson. My favorite items to use come from the kitchen: Cyclone by Quirky, a spork, gloves, recipe cards, etc.

NGSS Alignment:

1. Asking questions (for science) and defining problems (for engineering) 6. Constructing explanations (for science) and designing solutions (for engineering) 7. Engaging in argument from evidence 8. Obtaining, evaluating, and communicating information